RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. SECOND SEMESTER (January – June) 2014 Mid-Semester Examination, March 2014

Date : 27/03/2014

MATHEMATICS (General)

Time : 11 am – 12 noon

Paper : II

Full Marks : 25

[Use a separate Answer Book for each group]

<u>Group – A</u>

- 1. Answer any five questions :
 - a) What will be the equation of $x^2 + y^2 = 1$ if origin (0,0) is shifted to the point (1,0)?
 - b) Define rotation of an orthogonal system of coordinate axes?
 - c) Find the equation of bisectors of the pair of straight lines $2x^2 + 3xy + 4y^2 = 0$.
 - d) What will be the value of θ by which the orthogonal system through (0,0) rotated affects xy = 1 to becomes xy = -1.
 - e) Find the value of 'a' when y = ax is a bisector of $x^2 + xy + y^2 = 0$.
 - f) Find the angle between the pair of straight lines represented by the equation $x^2 + 5xy + 3y^2 = 0$.
 - g) When it is possible that $ax^2 + 2hxy + by^2 + 2gx + 2fy = 0$ represents a pair of straight lines does not passing through origin.

2. Answer **any one** question :

- a) i) Define collinear vectors.
 - ii) Show that the points $A(\vec{i}-2\vec{j}+3\vec{k})$, $B(2\vec{i}-3\vec{j}+4\vec{k})$ and $C(-2\vec{i}+\vec{j})$ are collinear. [1+4]
- b) i) If $|\vec{\alpha} + \vec{\beta}| = |\vec{\alpha} \vec{\beta}|$, find the angle between $\vec{\alpha}$ and $\vec{\beta}$.
 - ii) Show by vector method, that the perpendicular from the vertices of a triangle to the opposite sides are concurrent. [2+3]
- 3. Answer <u>any one</u> question : [1×5]
 - a) Define a bounded sequence. Show that every convergent sequence is bounded. [2+3]
 - b) Show that the sequence $\left\{\frac{4n+3}{3n+4}\right\}$ is convergent. Find the limit of the sequence. [4+1]

<u>Group – B</u>

4. Answer <u>any one</u> :

- a) Find the value of $\lim_{n \to \infty} \left[\frac{n+1}{n^2+1^2} + \frac{n+2}{n^2+2^2} + \dots + \frac{1}{n} \right].$
- b) If $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$ where n is a positive integer, show that $I_n = \frac{1}{n-1} I_{n-2}$. Use this result to evaluate $\int_0^{\frac{\pi}{4}} \tan^6 x \, dx$.
- 5. Answer <u>any one</u> of the following :
 - a) Find the Integrating factor of the following differential equation and hence solve : $(3x^2y^4 + 2xy)dx + (2x^3y^3 x^2)dy = 0.$
 - b) Solve the differential equation : $y + px = x^4p^2$. Also determine the Singular solution.

80參Q3

[1×5]

[1×5]

[5×1]

[1×5]